Testosterone improves the differentiation efficiency of insulin-producing cells from human induced pluripotent stem cells
نویسندگان
چکیده
Human induced pluripotent stem cells (hiPSCs) may provide potential resource for regenerative medicine research, including generation of insulin-producing cells for diabetes research and insulin production. Testosterone (T) is an androgen hormone which promotes protein synthesis and improves the management of type 2 diabetes in clinical studies. Concurrently, co-existed hyperandrogenism and hyperinsulinism is frequently observed in polycystic ovary syndrome, congenital adrenal hyperplasia and some of Wermer's syndrome. However, the relationship among androgens, insulin and the differentiation of pancreatic β cells is still not fully clear. Here we find that T improves the differentiation efficiency of insulin-producing cells from hiPSCs. The addition of T into routine differentiation formula for pancreatic β cells increases the differentiation efficiency from 12% to 35%. The administration of T promotes the expression of key genes associated with β cells differentiation including NGN3, NEUROD1 and INS. This finding benefits the ongoing process to optimize the differentiation protocol of pancreatic β cells from hiPSCs, and provides some degree of understanding the clinical management of T for type 2 diabetes.
منابع مشابه
Differentiation Potential of Nestin (+) and Nestin (-) Cells Derived from Human Bone Marrow Mesenchymal Stem Cells into Functional Insulin Producing Cells
The feasibility of isolating and manipulating mesenchymal stem cells (MSCs) from human patients provides hope for curing numerous disease and disorders. Recent phenotypic analysis showed heterogeneity of MSCs. A nestin progenitor cell is a subpopulation within MSCs which plays a role in pancreas regeneration during embryogenesis. This study aimed to separate nestin (+) cells from human bone mar...
متن کاملLarge-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications
Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...
متن کاملDifferentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells into Insulin Producing Cells Using Minimal Differentiation Factors
Background & Aims: Type 1 diabetes, or insulin-dependent diabetes, is an autoimmune disease in which pancreatic beta cells are destroyed by the immune system. Hitherto, no definite treatment has been found for this condition. Mesenchymal stem cells (MSCs) are multipotent, self-renewing cells that have the ability to differentiate into mesodermal tissues. This ability has attracted the attention...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملP-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کامل